hawk_eye.data_generation.create_detection_data

This script generates training data for the object detector model. The output will be images and the corresponding COCO metadata jsons. For most RetinaNet related training we can train on images with _and without_ targets. Training on images without any targets is valuable so the model sees that not every image will have a target, as this is the real life case.

hawk_eye.data_generation.create_detection_data.add_shapes(background: PIL.Image.Image, shape_imgs: PIL.Image.Image, shape_params, blur_radius: int) → Tuple[List[Tuple[int, int, int, int, int]], PIL.Image.Image][source]

Paste shapes onto background and return bboxes

class hawk_eye.data_generation.create_detection_data.alpha_params(font_multiplier:Tuple[int, int])[source]
hawk_eye.data_generation.create_detection_data.create_shape(shape, base, alpha, font_file, size, angle, target_color, target_rgb, alpha_color, alpha_rgb, x, y) → PIL.Image.Image[source]

Create a shape given all the input parameters

hawk_eye.data_generation.create_detection_data.generate_all_images(gen_type: pathlib.Path, num_gen: int, offset: int = 0) → None[source]

Main function which prepares all the relevant information regardining data generation. Data will be generated using a multiprocessing pool for efficiency.

Parameters
  • gen_type – The name of the data being generated.

  • num_gen – The number of images to generate.

  • offset – TODO(alex): Are we still using this?

hawk_eye.data_generation.create_detection_data.generate_single_example(data) → None[source]

Creates a single full image

hawk_eye.data_generation.create_detection_data.get_backgrounds() → List[pathlib.Path][source]

Get a list of all the background images.

hawk_eye.data_generation.create_detection_data.get_base(base, target_rgb, size)[source]

Copy and recolor the base shape

hawk_eye.data_generation.create_detection_data.get_base_shapes(shape)[source]

Get the base shape images for a given shapes

hawk_eye.data_generation.create_detection_data.random_list(items, count)[source]

Get a list of items with length count

hawk_eye.data_generation.create_detection_data.strip_image(image: PIL.Image.Image) → PIL.Image.Image[source]

Remove white and black edges